
11th International Course Care and Use of Laboratory Animals: mice, rats and zebrafish

Zebrafish Biology and Husbandry

Dr. Eleftheria Fanouraki, Laboratory teaching staff, Biology Dpt., UoC

Heraklion, 14th of May, 2025

8,5 min video with 5 multiple choice questions https://edpuzzle.com/assignments/644a4669800ebb4340bed334/watch

https://www.socrative.com/

login as Student

Room Name: FANOURAKI

Join

The Zebrafish

- Zebrafish (Danio rerio) is a tropical fresh water fish
- Zebrafish is named for the five uniform, horizontal blue stripes which extend to the end of the caudal fin
- It is laterally compressed with its mouth directed upwards

Common aquaria species

Pneumatic Dorsal

bladder

Posterior

Spleen

Pancreas (scattered diffusely throughout mesentery)

Melanocytes

(left testis is not shown)

urogenital pore

fluorescent fish

The taxonomy of Zebrafish

Kingdom:	Animalia	
Phylum:	Chordata	
Class:	Actinopterygii	
Order:	Cypriniformes	
Family:	Cyprinidae	
Genus:	Danio	
Species:	rerio	

The Zebrafish

Appearance

- Size ~4 cm
- distinguishable features between males and females

Life span

42-66 months (3-5 years)

Habitat

- Fresh water fish
- Tropical environment (22-30°C)
- Native to the streams of the South Asia (India, Bangladesh, Nepal, Myanmar, and Pakistan)

Pakistan MAHARASHTRA TAMIL NADU 9 1990-2012

https://elifesciences.org/articles/05635

The Zebrafish

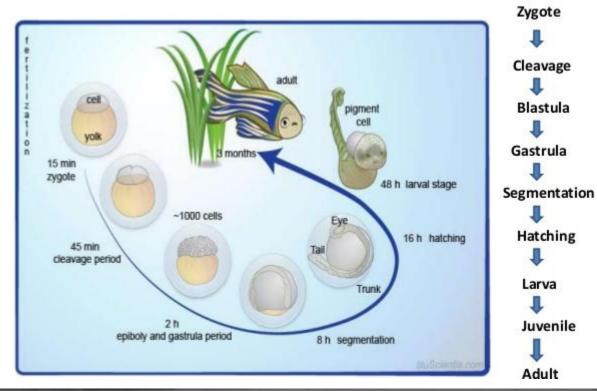
Habitat

- Inhabits streams, ponds and slow moving or still water regions, including rice fields
- Predation pressure has led to the development of shoaling behavior, believed to reduce stress and aggression among fish held in small groups

Feeding

Zebrafish are omnivores, consuming larval and adult insects, small crustaceans and other zooplankton,

but also algae, plant material and assorted detritus (dead organic material)

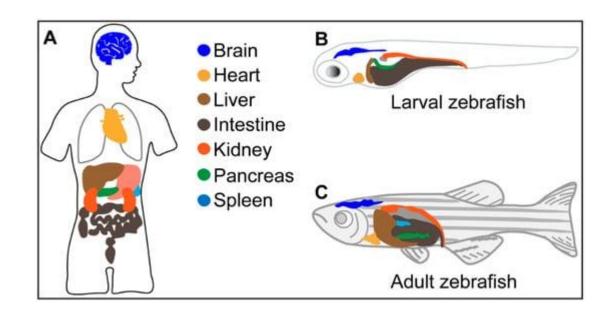

Life cycle of Zebrafish

Zebrafish **breed in small groups**, with females scattering clutches of eggs with no parental care

- External fertilization
- Female spawns every 2-3 days
- Several **hundreds of eggs** produced every time
- Breeds all year round
- Transparent eggs & embryos

Reproduction is primarily affected by

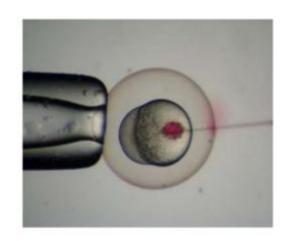
- food availability
- photoperiod

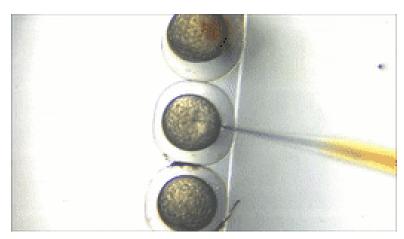


Zebrafish as an animal model

Zebrafish is being used widely as an animal model to study fundamental biological questions

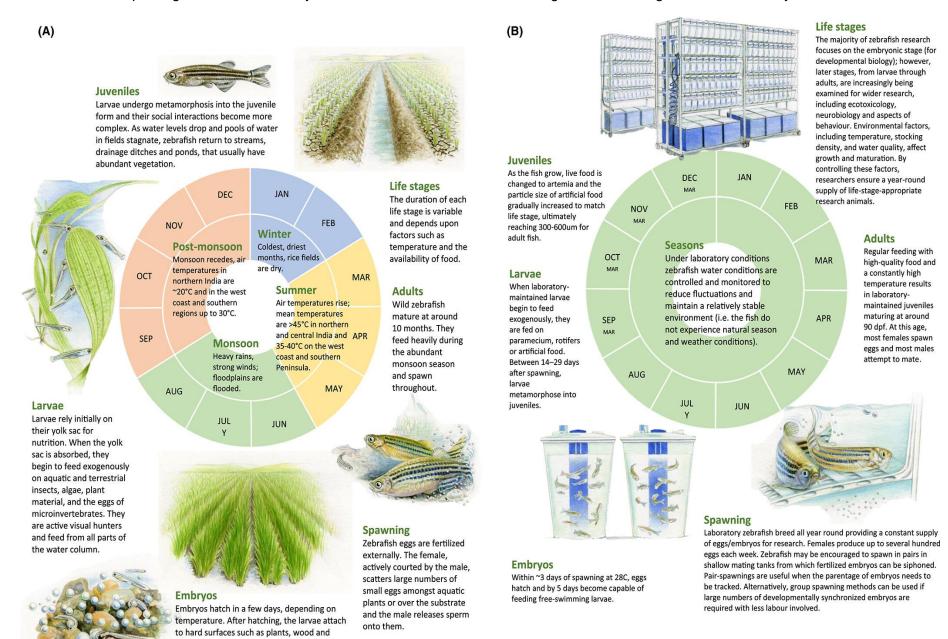
- molecular biology
- developmental biology
- Neurobiology
- Genetics
- Cancer research
- Drug discovery
- Endocrine research
- Stress physiology
- Social interactions
- Biotechnology
- Aquaculture


Zebrafish as an animal model


- Universally available
- Small size
- Large number of fish can be kept easily in the lab
- Low cost of maintenance
- Rapid development
- Rapid generation time
- Large number of offspring

Zebrafish as an animal model

- Eggs easy to manipulate (0.7mm)
- Good model for developmental studies (early life stages) due to transparency of the egg
- Extensively Sequenced
- Although humans may appear to be extremely different than zebrafish,
- 70% of human genes are found in zebrafish and
- 84% of genes known to be associated with human disease have a zebrafish counterpart.



Husbandry of Zebrafish

While conditions in the wild can vary considerably, it is essential to provide stable husbandry conditions in the laboratory,

- Temperature
- Photoperiod
- Water quality parameters
- Stocking density
- Feeding schedules

stones gradually moving to the surface of the water to inflate their swim bladders before becoming free swimming larvae 1-2 days later.

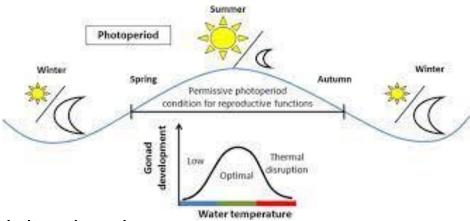
Husbandry of Zebrafish

Transportation

- Relevant documentation from the exporting facility should be sent prior to the shipment.
- The shortest possible shipment time has to be planned.
- Only bleached embryos and/or healthy juveniles/adult fish can be shipped.
- Upon arrival, animals should be visually checked, equilibrate water temperature and transfer the fish into the reception tank without transferring the water from the transport container.
- In order to avoid ammonia poisoning, it is vital that adult fish are removed with a net from the transport container immediately after temperature adaptation.
- Use a **quarantine** system for raising and monitoring newly imported embryos and adult fish, and ask for health certificate from the sending facility.

Husbandry of Zebrafish

Housing systems


Recirculating water systems for zebrafish should include

- o filter systems,
- water chemistry monitoring or regulation capabilities,
- o germicidal UV irradiation,
- light and
- o temperature control units.

Photoperiod

In nature, light conditions vary with seasons and weather

• Modern laboratory facilities keep fish exposed to a stable light-dark (L–D) cycle (commonly **14 hours Light:10 hours Dark** or 12 hours Light:12 hours Dark)

 Optionally the exchange between light and dark comes with a gradual increase and decrease in light intensity mimicking dusk and sunrise

• The intensity of light should be as uniform as possible across tanks and intensities should be adjusted to between 54 and 334 lux at the front of the tank

• Using other settings will not affect animal welfare as such, but may influence physiological processes, for example **spawning frequency** (and hence breeding success)

Water quality parameters

- Depending on the local water supply used for recirculating water systems, some laboratories can use **tap** water without major amendments. **Chlorine** still needs to be removed, as levels safe for humans (0.1 mg/L) are **toxic** for fish
- Many facilities only use conditioned deionised water.
 - Reverse osmosis (RO) is commonly used for deionisation and sea salt, calcium chloride and sodium bicarbonate are then added to achieve the desired salinity, hardness and pH.
- Water exchange rate 10% daily

Water parameters

- Temperature
- pH
- Hardness
- Salinity
- Dissolved oxygen
- Nitrogenous wastes

COMMISSION DELEGATED DIRECTIVE (EU) 2024/1262 of 13 March 2024

amending Directive 2010/63/EU of the European Parliament and of the Council as regards the requirements for establishments and for the care and accommodation of animals, and as regards the methods of killing animals

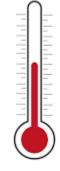
Table 11.1

Water parameters requirements in zebrafish housing systems

Water parameters	Minimum-maximum requirements		
Temperature	24-29 °C		
Conductivity	150-1700 μS/cm²		
Total hardness	40-250 mg/L CaCO ₃ 6,5-8		
рН			
Nitrogen compounds	$NH_3/NH_4^+ < 0.1$ (*) mg/L, $NO_2^- < 0.3$ mg/L, $NO_3^- < 25$ mg/L		
Dissolved oxygen	> 5 mg/L		

^(*) or below detection limit. 0,1 mg/L indicates the total amount of ammonia, NH_3/NH_4^+ . This corresponds to 0,002 mg/L of NH_3 at 28 °C and pH 7,5.

Water quality parameters: Temperature


Temperature is one of the most important physical parameters to consider in fish culture operations because of the profound effects it exerts on biological and chemical processes

Fish are **ectothermic animals** and display varying degrees of tolerance to changes in temperature, as well as a more narrow optimum range in which they perform best.

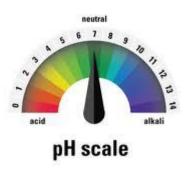
Zebrafish can be classified as eurythermal, as they exhibit a tolerance for wide temperature ranges (12-39°C).

Zebrafish

- Optimum temperature 28°C
- Temperature influences water chemistry and animal physiology and larval development

For standard growth curves, embryos should be kept at a temperature of 28 ± 0.5 °C to 120 hpf.

Adjusting the rearing and maintenance temperatures for <u>larvae and adults</u> within a <u>24–29°C</u> range is recommended.


For **time-limited experiments** a temperature range from **15 to 39°C** is acceptable.

Water quality parameters: pH

Like temperature, the pH of the water in aquatic systems also exerts profound effects on

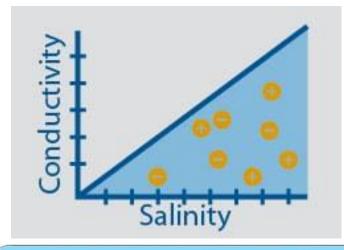
- biological processes in fish
- the function of the microbial community that supports them

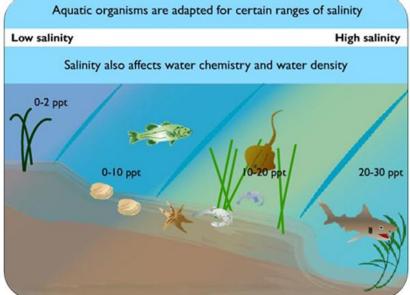
Zebrafish

The maintenance pH that most zebrafish facilities strive for is **between 6.5–8.0**, which is within the general range recommended for freshwater fish

Laboratory conditions for adult zebrafish				sh	Lee et al., 2022
Parameter	Wild habitats	Tolerance limits	Optimal range	Recommendations I	mplications for welfare
pН	Varies from 5.9 (Engeszer <i>et al.</i> , <u>2007</u>) to 9.8 (Arunachalam <i>et al.</i> , <u>2013</u>)	Lower and upper lethal limits: 3.0 and 12.0 respectively (Zahangir <i>e al.</i> , 2015)		7–8 (Hammer, <u>2020</u>); 6.5–8 (Alestrom et al., <u>2019</u>)	Exposure to pH near the lower or upper limits damages skin and gills, leads to loss of balance, convulsions and death (Zahangir et al., 2015).

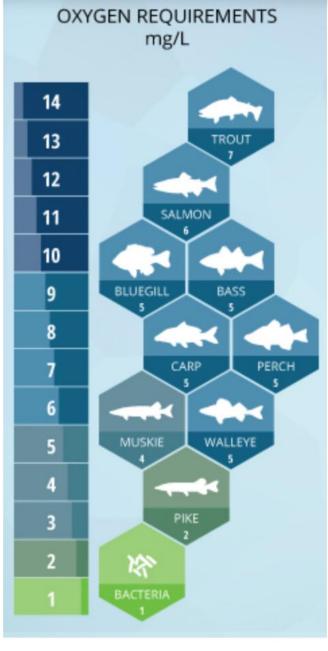
Water quality parameters: hardness


- Water hardness is a measure of the quantity of divalent ions, primarily calcium and magnesium in water
- These ions must be provided to fish in captivity in their water
- These ions are required by fish for egg, bone and tissue development, osmoregulation and blood clotting


Zebrafish is classified as a "hard water" species, preferring hardness values in excess of 100 mg/L CaCO₃, so If reverse osmosis water is utilized, then addition of calcium and magnesium salts is required to bring hardness values within 40–250 mg/L, the generally recommended range for freshwater aquatic animals

Water quality parameters: salinity

- Salinity is a measure of the mass of dissolved salts in a given mass of water and usually expressed as parts per thousand (ppt). Salinity is measured using Conductivity (uS/cm) measurements
- Maintaining fish **above or below** their salinity optimum is possible, but because **fish must spend more energy** in doing so, it can compromise growth, survival and reproduction.
- Zebrafish are freshwater fish, but are tolerant of a wide range of salinities
- However, it is better to maintain zebrafish stocks at stable salinities within the general range of 0.25–0.75 ppt.

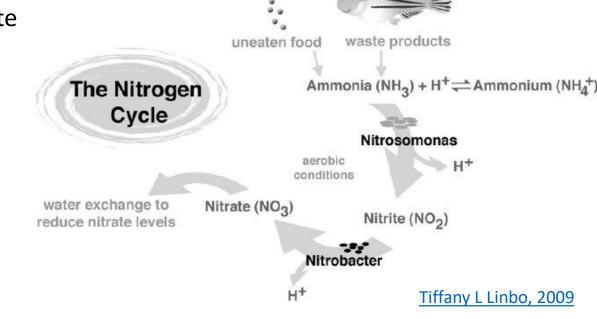


Water quality parameters: dissolved oxygen

- Dissolved oxygen is a highly important parameter in fish cultivation
- Fish require oxygen for **respiration**, and **demand depends** upon a number of factors, including **body size**, **feeding rate**, **activity levels**, **and temperature**
- In general, small-bodied, tropical fish such as zebrafish typically have high metabolic rates and, therefore, consume more oxygen per unit weight than larger fish
- This fact, coupled with their relatively high maintenance temperatures, stocking density, and levels of feed input that are typical of intensive zebrafish facilities necessitate that dissolved oxygen levels be maintained at or just under saturation (~7.8 mg/L at 28.0°C) to ensure health of the fish

Minimum dissolved oxygen requirements of freshwater fish

Laboratory conditions for adult zebrafish					
Parameter	Wild habitats	Tolerance limits	Optimal range	Recommendations	Implications for welfare
Dissolved	Unknown	Levels of 0.8 mg l ⁻¹	Unknown	Range from 6 mg l ⁻¹	Uneaten food, decaying
oxygen		are lethal within 2		(Matthews, Trevarrow &	solids and high fish
		days and levels of		Matthews, <u>2002</u>) to	densities can reduce levels
		$0.4~{ m mg~l^{-1}}$ are lethal		7.8 mg l ⁻¹ (Harper &	(Hammer, <u>2020</u>). Warning
		within 12 h (Rees,		Lawrence, <u>2012</u>); with a	signs include
		Sudradjat &		suggested minimum of	hyperventilation, surface
		Love, <u>2001</u>)		4 mg l ⁻¹ (Lawrence &	swimming and gulping air
				Mason, <u>2012</u>)	(Kramer, <u>1987</u>); extreme
					depletion can damage gills,
					impair growth, cause
					immunosuppression, and
					lead to death.

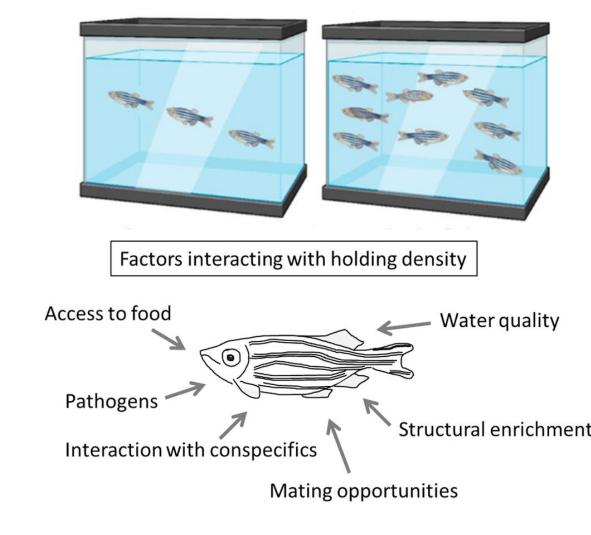

Water quality parameters: nitrogenous wastes

- In freshwater fish, ammonia is excreted across the branchial epithelium via passive diffusion, and to a lesser extent, in feces
- It is also produced during the decomposition of decaying organic matter (i.e. dead fish, uneaten food)
- Ammonia is highly toxic and must be eliminated
- this is accomplished by **nitrifying bacteria that oxidize ammonia into nitrate**. The intermediate product of this conversion, nitrite is also toxic to fish
- 10% daily water renewal prevents accumulation of Nitrate

Optimal levels of nitrogenous wastes

- Ammonia 0 ppm
- Nitrite 0 ppm
- Nitrate < 10 ppm (ideal for breeding fish)

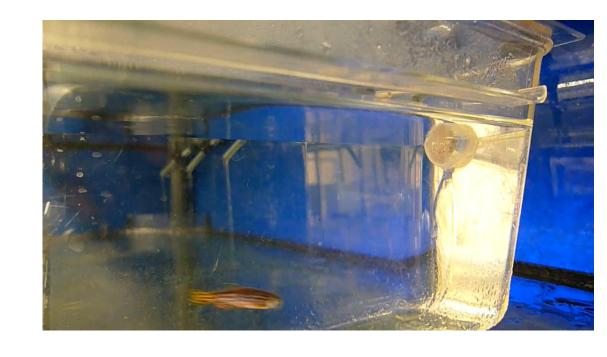
A well-dimensioned biofilter keeps levels of total ammonia < 0.1 mg/l, nitrite < 0.3 mg/l and nitrate < 25 mg/l

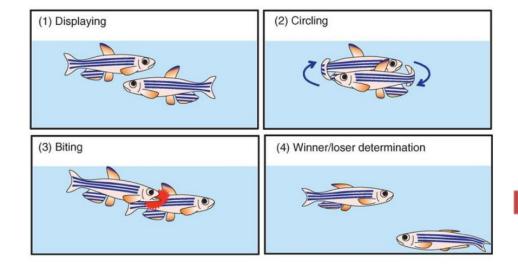


Laboratory conditions for ad	ult zebrafish
------------------------------	---------------

Laboratory conditions for adult zebrafish					
Parameter	Wild habitats	Tolerance limits	Optimal range	Recommendations	Implications for welfare
Ammonia	Unknown	Levels >1.0 mg l ⁻¹ are lethal to many fish (Murray, Lains & Spagnoli, <u>2020</u>) but the specific tolerance limits of zebrafish are unknown		As close to 0 mg l^{-1} as possible (Hammer, 2020; Murray et al., 2020) $< 0.1 \text{ mg } l^{-1}$	Highly toxic. Chronic exposure to non lethal levels can result in immunosuppression and reduced growth (Murray et al., 2020). Acute exposure can cause hyperexcitability, anorexia, and death (Murray et al., 2020).
Nitrite	Unknown	Levels of 386 mg l ⁻¹ are lethal within 4 days (Voslářová <i>et al.</i> , 2008)	Unknown	As close to 0 mg l ⁻¹ as possible: <0.5 mg l ⁻¹ (Hammer, <u>2020</u>); <1.0 mg l ⁻¹ (Murray et al., <u>2020</u>) < 0,3 mg l ⁻¹	Warning signs in fish include lethargy remaining near water inlet, hyperventilating; chronic exposure impairs growth (Murray et al., 2020).
Nitrate	Unknown	Unknown	Unknown	<100 mg l ⁻¹ (Pereira et al., 2017); <50 mg l ⁻¹ (Hammer, 2020); <25 mg l ⁻¹ (Alestrom et al., 2019) < 25 mg l ⁻¹	Less toxic than nitrite but may accumulate over time in recirculating systems with high fish densities (Learmonth & Carvalho, 2015). Chronic exposure can damage gills, skin, kidneys, liver and intestines (Pereira et al., 2017).

Stocking density


- For long-term housing, a standard of 4–10 adult fish/l will help to maintain low stress levels and good water quality.
- For embryos, a recommended upper limit is 100/35 ml in a 9 cm Petri dish, and
- for **5–10 dpf larvae**, up to **250/l**. Higher and lower densities, including keeping single fish, can be tolerated for limited periods.



The holding density does not only correspond to available space per fish but will also affect other
factors relevant for fish welfare, such as the access to food and the resulting water quality, including
oxygen levels and waste products.

Stocking density

- Higher stocking densities have been associated with crowding stress
- Lower stocking densities have been associated with the emergence of dominant and submissive behavior in zebrafish, which leads to aggressive behavior and elevated stress and consequently reduced welfare

Zebrafish Biology and Husbandry

Feeding

- It is generally accepted that a **combination of live feeds and processed dry feeds improves growth**, **sexual maturation and reproductive performance**, all positive indications of well-being
- Dry feed diets are generally assumed to be nutritionally complete,
 whereas live feed and the associated fish prey-capture behavior has an enrichment effect

Feedings

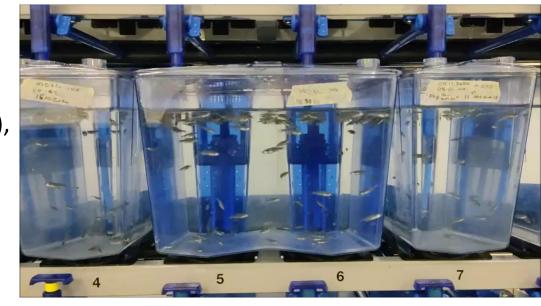
2-3 times per day (Depending on the developmental stage)

Larval Diets

- Dry micro-pellets (size: 100-200 microns)
- · Live Artemia (Artemia nauplii)

3-5 % of body weight per day

- Dry flakes
- Dry pellets (size: 400-600 microns)
- Live Artemia (Artemia nauplii)



Artemia nauplii

Husbandry of Zebrafish

- Decades of experience have proven that maintaining zebrafish is a relatively straightforward task
- In most cases, commercially available tank systems are used, which come fully integrated with filter systems,
 - **Ultraviolet radiation** for water disinfection (UVC) and **temperature** control units
- These systems contain installed tanks (glass or polycarbonate), typically between 1 L and 10 L which can be removed from the main water supply and reconnected again depending on the specific needs
- Most systems rely on a recirculating water system in which pumps feed water into the tanks and,
 through overflow system, remove an equal amount of water

3.6 L tank

- Gravel, sand,
- image of gravel or sand,
- artificial plants,
- > Pairs preferred substrate over barren tanks.
- ➤ Groups preferred substrates and plants over barren areas;
- > strong preference for gravel and images of gravel (Schroeder et al.,2014)

- flowing water,
- plastic plants used in Wild-caught fish
- resulted in less cohesive,
- > more aggressive,
- more active groups (Suriyampola et al., 2017).

- Auditory enrichment (classical music)
- > Led to less anxious,
- > less active
- > no effect on whole-body cortisol (Barcellos et al., 2018)

- Plastic plants,
- marbles,
- mesh strips,
- PVC pipe,
- various images,
- mirrored paper,
- sight of conspecifics
- > Fish preferred mirrored paper and
- ➤ sight of conspecifics (Krueger et al., 2020)

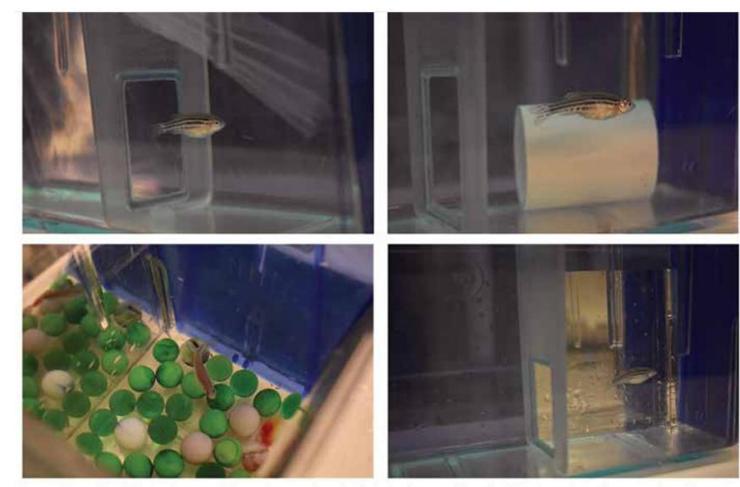
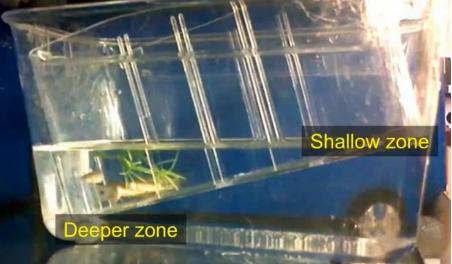


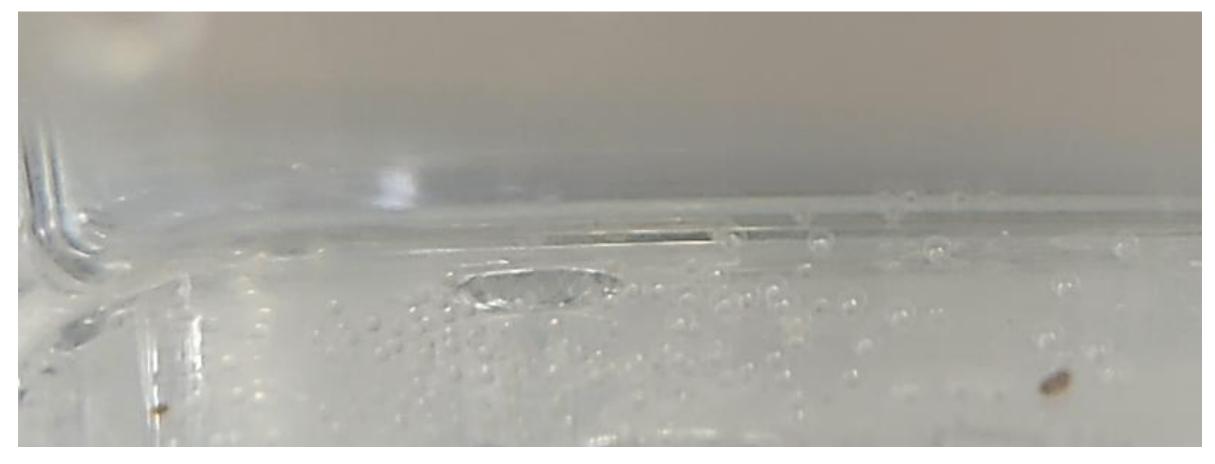
Figure 2. Examples of the inanimate enrichment items evaluated. Clockwise from top left: tulle, PVC pipe, mirrored paper, and marbles.

Breeding of Zebrafish

mass spawning device


Pairwise breeding: Transfer one female and one male (or other sex proportions)
 separated to opposite sides of the breeding tank, from the evening before

• Zebrafish initiate breeding at dawn, so the divider is removed the next morning shortly after the onset of light.

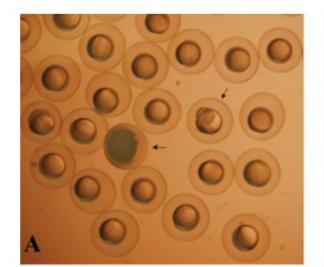

• Allow mating for 20 min so that fertilization can occur and sufficient number of

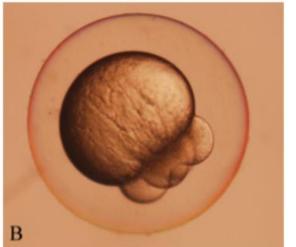
embryos are laid at the bottom of the tank

Christian Lawrence et al., 2012

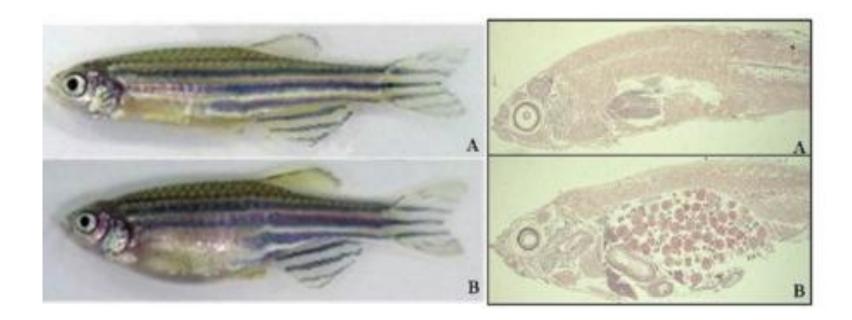
Avoid repeated inbreeding from sibling matings.

Keep records of the dates of fertilisation, the number of fish and key genetic information (transgenesis, mutation).

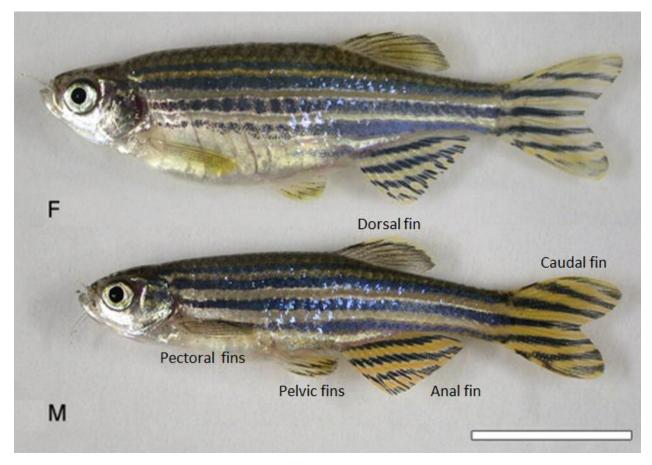

Follow recommendations by the zebrafish nomenclature committee (see Zebrafish Information Network (ZFIN).


Breeding of Zebrafish

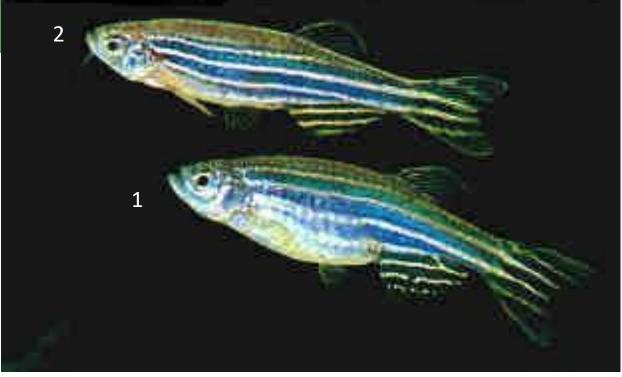
- After 20 min, return the fish to their tanks. Collect the eggs using a strainer
- Wash the embryos thoroughly with system water.


- Transfer the embryos to a Petri dish or small tank by rinsing the strainer with embryo medium; a.k.a. EM3 (NaCl, 13.7 mM; KCl, 0.54 mM; MgSO₄, 1.0 mM; CaCl₂, 1.3 mM; Na₂HPO₄, 0.025 mM; KH₂PO₄, 0.044 mM; NaHCO₃, 4.2 mM).
- Embryos can be observed under a **stereoscope**. **Fertilized eggs are then separated** from the unfertilized eggs using a needle and a pipette

Breeding of Zebrafish

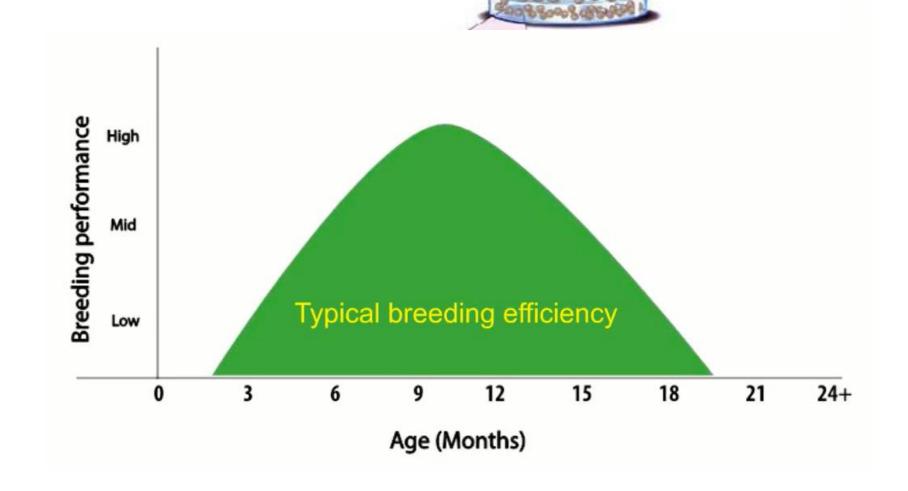

• Females can be distinguished from males because of their bigger underbelly.

Ricardo Lacava Bailone, et all, 2020


Breeding of Zebrafish

- Males can also be distinguished from females because they are more slender and darker in colour.
- Moreover, males have more yellow coloration in the anal fin compared to females

Schonthaler et al., 2010



Female

- Wider body with big gut area
- Silver/pink tint
- Silver anal fin

Male

- Long, narrow body
- Yellow/tan tint
- Yellow anal fin

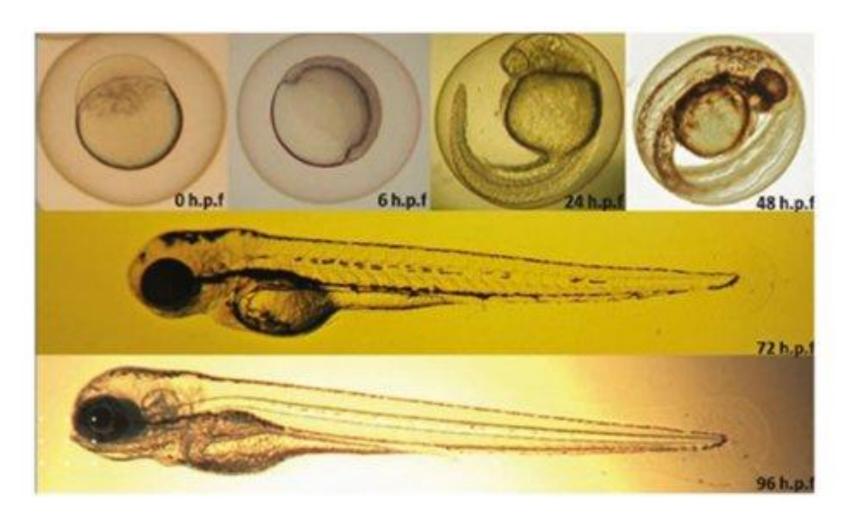
Zebrafish Biology and Husbandry

Zebrafish developmental stages

- Embryos settle over the bottom of the Petri dish/tank
- Fertilized eggs are kept in an incubator (~28.5±0.5°C)
 for 72 hrs until the larvae are hatched.
- After hatching, larvae attach either at the bottom of the tank or at the walls (feeding from the yolk salk)
- At roughly 5 days post fertilisation (dpf) the swim bladder has developed and allows the larvae to swim freely in the tank (external feeding)
- Stages of embryonic development of the zebrafish

Water is changed on a daily basis. The water change should include removing dead or diseased larvae and any other debris with a pipette, with minimum disturbance

Incubator



Larval culture

- After 14 days, larvae can be shelved into the system, and supplied with a small stream of cycling water (1-2 drops per second). As the larvae grow, water flow can be increased
- It usually takes 3 months for the embryos to develop into sexually mature adults


Ricardo Lacava Bailone, et all, 2020

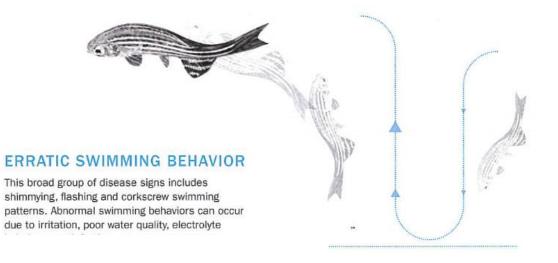
Health and welfare monitoring Stress and welfare indicators

EMACIATION

Chronically sick fish often exhibit wasting of

muscle and fat reserves due to inappetence.

DROPSY


Fluid build-up in the skin causes the scales to stand upright. Along with fluid accumulation in the coelomic cavity (ascites), this can result from infection or other causes of osmotic imbalance.

FRAYED FINS

Trauma, infection and poor water quality contribute to frayed and eroded fins.

In fish, lordosis, kyphosis and scoliosis have been associated with developmental disorders, vitamin

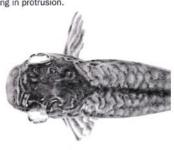
SKIN DISCOLORATION

ACTIVE FEEDING BEHAVIOR

Hemorrhage, ulceration, white or dark spots, and darkening or lightening of the skin are common signs of infection in fish.

LETHARGY

Sick fish often express a low level of activity; in particular, a reluctance to feed or reduced avoidance behavior. The fish might also lie on the bottom of the tank.



EXOPHTHALMIA

HEALTHY BODY CONDITION

FINS INTACT

Also known as "Pop Eye", this arises from systemic inflammation or a space occupying mass behind one or both eyes resulting in protrusion.

and mineral imbalance, and infectious disease.

Sanitation of equipment and hygiene

- A clean environment is essential for maintaining a high standard of animal health and welfare
- Avoidance of cross contamination during routine husbandry procedures, since many diseases can be spread through physical contact between individual fish, tanks and water systems.
- Any piece of equipment in physical contact with fish (nets, mating boxes, etc.) should be dedicated to
 one specific system and sanitized periodically
- During chemical sanitization (e.g. chlorine, ethanol) care needs to be taken (e.g. sufficient rinsing with water) to avoid contaminating the water with chemicals

Sanitation of equipment and hygiene

- Equipment used for quarantine units needs to be isolated from equipment used at the main facility to reduce cross contamination. As a general rule, staff, material and work movement should be carefully considered so as to reduce contamination.
- Growth of biofilm on the water surface or algae needs to be monitored and if any to be removed as it is
 a source of pathogens
- Use of gloves and/or appropriate hand disinfection routines are important in order to avoid cross contamination between fish populations and exposure of facility staff and researchers to zoonotic infections.

Fish handling

Safe fish handling is important from an animal **welfare** perspective but also from a **scientific standpoint**, as **fear and stress** responses can result in physiological changes that may:

- contribute to data variability and
- can affect the number of animals needed to achieve statistically significant results

Fish used in research, must be treated with the respect accorded to other vertebrate species.

- use of anaesthesia to minimize stress and pain
- minimize the **time** that you handle the fish
- Always use an appropriate net to catch the fish (size and mesh)
- Limit the time of air exposure (max 30 seconds)
- Keep fish wet while handling them. This prevents damage to the fish's protective mucous surface
- All animals should be approached in a calm, quiet and confident manner.
- Wear gloves

Anaesthesia

Anaesthesia is generally defined as a state caused by an applied external agent resulting in a loss of sensation through depression of the nervous system

The efficacy of most anesthetics is affected by

- species
- body size
- the density of fish in the bath
- water quality

it is imperative that **preliminary tests** be performed with small numbers of fish to determine the optimal **dosage** and **exposure time**.

Anaesthetics

• MS-222 (Tricaine): is the most widely used anesthetic and induces a very rapid and deep anesthesia (dosage: 25-100 mg/L)

Anaesthesia

Animals are anaesthetized to **provide analgesia and lack of awareness** so that painful or stressful procedures can be undertaken humanely (e.g., blood sampling, surgery, manipulation).

Anaesthesia can also provide a means of **restraining** an animal so that it is not distressed by prolonged immobilization.

In general, an **anaesthetic agent should**:

- achieve the required depth and duration of anaesthesia
- cause minimum distress to the animal
- be free from undesirable side effects
- allow a smooth and uncomplicated recovery
- cause minimal interference with the purpose of the research procedure

Stages of anaesthesia and recovery

Before anaesthesia

3-5 min after addition of MS-222 into the water

After 1min in clean water

Stages of Anesthesia	Description						
I	Loss of equilibrium						
II	Loss of gross body movements but with continued opercular movements						
III	As in Stage II with cessation of opercular movements						
Stages of Recovery							
I	Body immobilized but opercular movements just starting						
П	Regular opercular movements and gross body movements beginning						
III	Equilibrium regained and preanesthetic appearance						

From Iwama et al., 1989

Euthanasia

The **principles** of euthanasia:

- Whenever an animal's life is to be taken it should be treated with the highest respect
- **Humane killing by anaesthetic overdose** can cause immediate unconsciousness and subsequent death (no pain or distress)
- Require minimum restraint of the animal
- Be appropriate for the species, age and health of the animal
- Personnel should be trained and competent

Directive 2010/63/EU +DIRECTIVE (EU) 2024/1262

Requirements

- 1. Shall, where appropriate, be used with prior sedation.
- 13. Specialised equipment required.
- 17. To be used only for zebrafish (*Danio rerio*) ≥ 16 days post fertilisation (dpf) and with a maximum body length of 5 cm.

 Temperature of hypothermic shock shall be ≤ 4°C and the temperature difference from holding temperature shall be ≥ 20°C. Fish shall not have direct contact with ice.

 Minimum exposure time shall be 5 minutes.'

'Animals- remarks/metho ds	Fish	Amphibians	Reptiles	Birds	Rodents	Rabbits	Dogs, cats, ferrets and foxes	Large mammals	Non- human primates	Cephalopods
Anaesthetic overdose	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	
Captive bolt	X		(2)	\times	X		X		\times	
Carbon dioxide	X		\times		(3)	\times	X	\times	\times	
Cervical dislocation			X	(4)	(5)	(6)	X		X	
Concussion/per cussive blow to the head				(7)	(8)	(9)	(10)		\times	
Decapitation	X		\times	(11)	(12)	\times	X	X	\times	
Electrical stunning	(13)	(13)		(13)	X	(13)	(13)	(13)	X	
Inert gases (Ar, N ₂)	X							(14)		
Shooting with a free bullet with appropriate rifles, guns and ammunition			(15)				(16)	(15)		
Hypothermic shock	(17)'		X	\times	X	\times	X	\times	X	\nearrow

Conclusions

- Given the growing importance of the zebrafish as a research model system, it is imperative that standards for its husbandry be developed and applied.
- In a laboratory setting the aim is to maintain zebrafish in a 24/7 controlled environment mimicking natural conditions.
- Parameters for well-being are reproductive success, growth and the absence of signs of illness or excessive stress.

Zebrafish Biology and Husbandry

Thank you !!!

