

University of Crete, Department of Biology

Zebrafish Behavioral Indicators of stress & anxiety

Dr. Antonia Theodoridi

tonia.theod@gmail.com

Heraklion, May 20th, 2025

Behavioral studies in fish

There are numerous fish species used as model organisms to study fish behavior. Some of them include:

- Danio rerio (zebrafish)
- Notobranchius furzeri
- Oryzias latipes (medaka)

- *Poecilia reticulata* (Guppy)
- Gasterosteus aculeatus (three-spined stickleback)
- Oreochromis niloticus (Nile tilapia)

Zebrafish as a model organism for behavioral studies

- Exhibit a wide repertoire of behaviors.
- Its small size along with the low cost housing permits high-throughput screening.
- Readily available video tracking technologies that can be coupled with zebrafish behavioral assays, providing data-rich endpoints (e.g. velocity, distance travelled, three-dimensional spatial and spatiotemporal swim path reconstructions) which are impossible to generate manually.
- Possess all major neurotransmitter systems, transporters, receptors and hormones.
- Fully sequenced genome with 70-75% of human genes having at least one zebrafish orthologue.

Zebrafish is one of the most frequently used fish species for behavioral purposes, leading to a rapid development of numerous protocols to study several behavioral phenotypes.

- Stress
 Memory & Learning
- Anxiety

- Reward
- Aggression
 Social behavior

Zebrafish as a model organism for anxiety and stress research

- Robust and easily quantifiable **cortisol** stress response.
- Clear-cut **drug-evoked phenotypes** with high predictive validity.
- Sensitivity to a wide range of **experimental stressors**, such as:

Novelty exposure	Predator exposure
Social isolation	Alarm substance
Confinement	

Disorder	Zebrafish Phenotypes	
Anxiety/Fear-related behavior	 Reduction of exploration (especially in the top part of novel environments) Increased avoidance Erratic behavior and freezing Elevated cortisol and brain <i>c-fos</i> Highly sensitive to anxiolytic and anxiogenic agents 	

Novelty based tests for studying anxiety

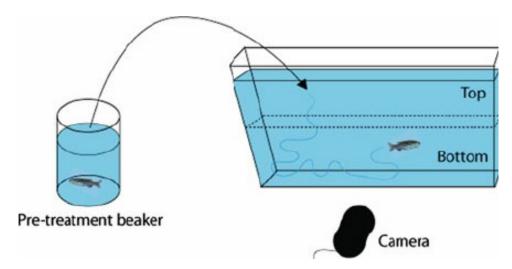
A novel environment constitutes a potentially dangerous situation for zebrafish. As a result, fish exhibit **avoidance behavior** which serves evolutionary conserved antipredatory functions.

An animal's **exploratory behavior** in a novel environment is believed to reflect the emotional state of animals.

Tests in this category include:

- 1. Novel tank test (vertical exploration)
- 2. Open field test (horizontal exploration)
- 3. Light/dark preference test

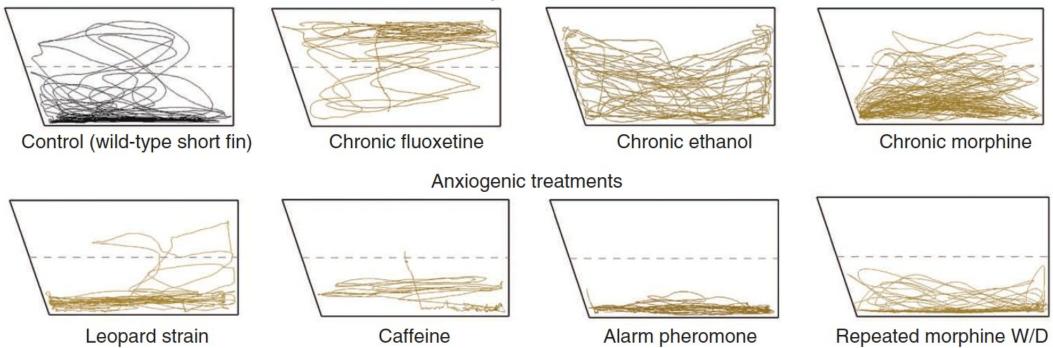
Novel Tank test


A novelty based paradigm, which measures **vertical exploration**.

Zebrafish express a robust **anxiety-like response**, once introduced to the novel tank apparatus, consisting of:

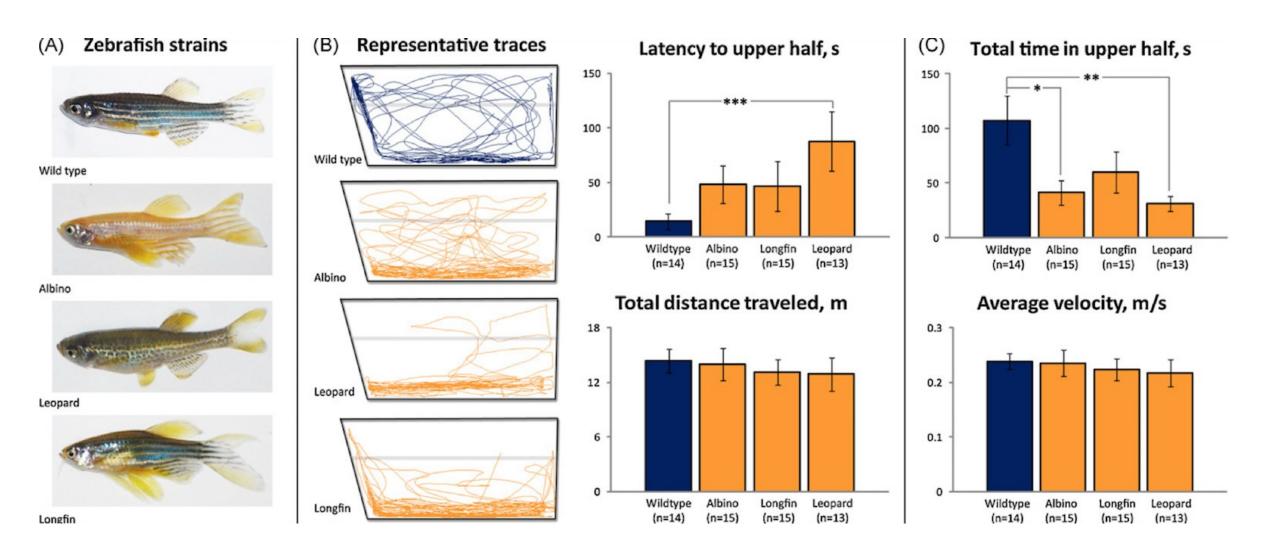
- Diving to the bottom of the tank (geotaxis)
- Reduced exploration
- Increased freezing
- Erratic movements

These behavioral responses are accompanied by **physiological** responses:

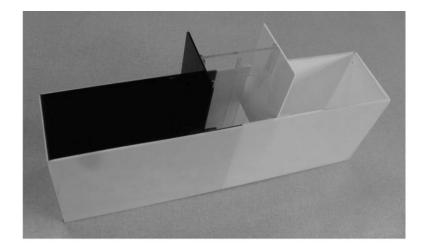

- Elevated cortisol levels
- Increased breathing
- Increased heart beat frequency.

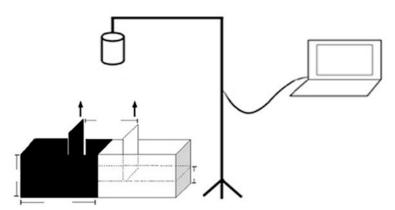
Measured parameters:

- \checkmark Time spent in the top part of the tank
- ✓ Transitions to the top
- ✓ Latency to the top
- ✓ Erratic movement
- ✓ Freezing incidents
- ✓ Time spent freezing


Novel Tank test

Anxiolytic treatments


Representative trace of the zebrafish movement in the novel tank test (6 minute trial). Different experimental manipulations show a decrease or increase in the anxious phenotype, compared to the control tank.

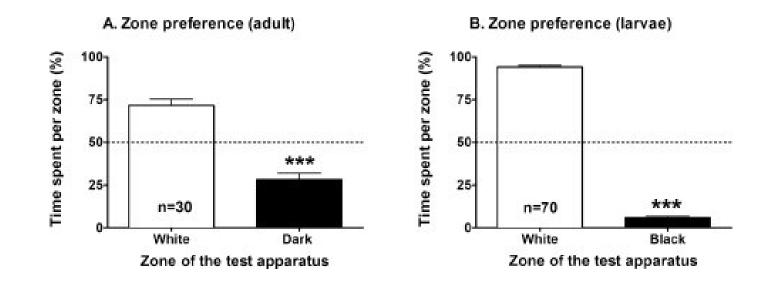

Novel Tank test

Egan *et al.,* 2009.

Light/dark preference test

Measured parameters:
✓ Time spent in the white zone
✓ Time spent in the black zone

Adult zebrafish, as well as other fish species (e.g. goldfish, guppies, minnows and tilapia), are generally believed to display an innate **aversion to bright** and white environments, and a **preference for darker** environments.


However, there are some reports which indicate a preference for the white area of the tank in zebrafish. The inconsistencies in the literature are largely attributable to differences in housing conditions (such as lighting), sex, age, social status and genetic strains.

Fish are left to acclimatize for 3-5 minutes in the centrally isolated compartment.

The separating doors are removed and fish are left to freely move in the tank for 15 minutes.

Light/dark preference test

Avoidance of the dark area & preference for the light/white area in both adult zebrafish and larvae.

Champagne et al., 2010

Exploratory tank test

Quantification of the **exploratory** behavior of adult zebrafish.

A shoal of conspecifics is placed in the first compartment and left there undisturbed for 24 hours.

The next day the experimenter opens the "door" of the second compartment and throws some food pellets to the first and second compartment. Fish are left free to explore the tank for 8 days. They are fed daily according to their feeding regimen.

Chronic stress protocols

Protocols that expose zebrafish to **unpredictable chronic stress** (UCS) conditions.

- The majority of them last for 14 days.
- Fish are exposed to two stressors daily. The stressors are chosen randomly every day. Some of the stressors applied in protocols of chronic stress include:

- Restraint stress
- Social isolation
- Over-crowding
- Dorsal body exposure

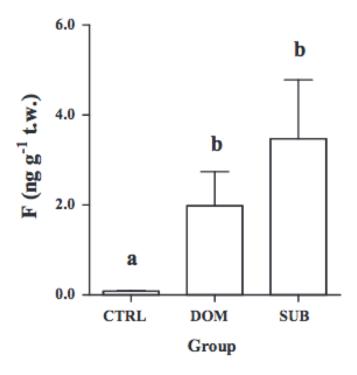
- Tank change
- Cold stress
- Heat stress

- Chasing
- Predator exposure
- Alarm pheromone stress

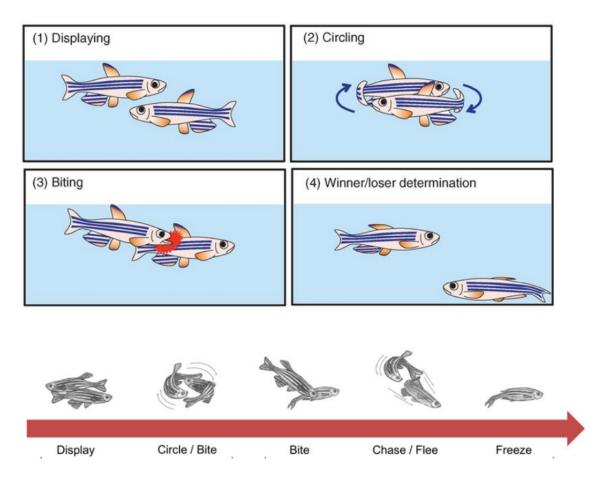
Chronic stress protocols

Behavioral, physiological and cellular responses, similar to those observed in rodents and chronically stressed humans.

More specifically, the stress protocol induced:


- Anxiety
- Cognitive impairment
- Neuroendocrine dysfunction (increased cortisol and *CRF* levels).

Impaired memory	Piato <i>et al.,</i> 2011
1 Cortisol	Piato <i>et al.,</i> 2011; Pavlidis <i>et al.,</i> 2015
↑ CRF expression	Piato <i>et al</i> ., 2011
↓ Neurogenesis	Chakravarty <i>et al.,</i> 2013
POMC, GR, MR, prolactin, BDNF, hypocretin/orexin, and c-fos expression	Pavlidis <i>et al.,</i> 2015


Aggression in zebrafish

Zebrafish in nature form shoals, yet when put in pairs they often exhibit an aggressive behavior that leads to the establishment of a social hierarchy. The "winner" of this dyadic interaction is considered the **dominant** individual, while the "loser" is the **subordinate**.

The established hierarchy consists a form of **social stress** for both the dominant and the subordinate, therefore, zebrafish exhibit anxiety-like behavior. Both dominants and subordinates show higher cortisol levels compared to controls (Pavlidis *et al.*, 2011).

Aggressive behavior in zebrafish

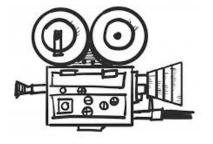
Oliveira *et al.,* 2011

Displaying consists of an approach to the conspecific followed by a turn to the left or right with fins erect. **Circling** is considered another form of lateral display that may last an extended period and during which the fish rise in the water column.

Chasing is a pursuit or a quick approach to an individual.

Bites consist of closing the mouth against another individual.

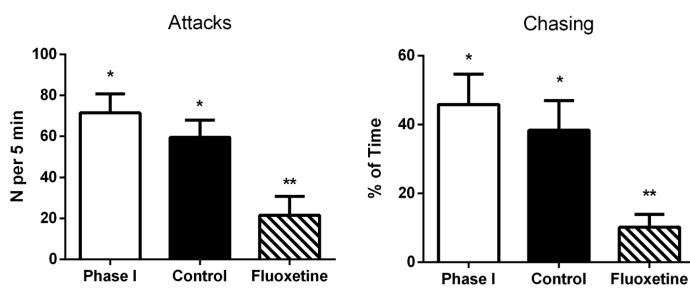
Freezing is the term that describes the immobility state with retracted fins.


A **fleeing** individual moves away from a pursuing individual for an extended period of time.

Dominant behavior consists mainly of **chasing** and **biting**, while subordinate behavior is expressed as **fleeing** and **freezing**.

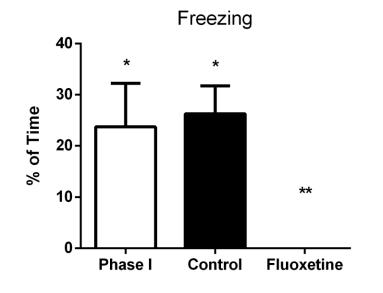
Unconditioned social interaction test / Paired aggression test

Pairs of <u>same sex</u> adult zebrafish are introduced in 2L tanks 2 h



Recording of the pair's behavior for 5 minutes.

Behavioral analysis and quantification of the **dominant** and **subordinate** behavior

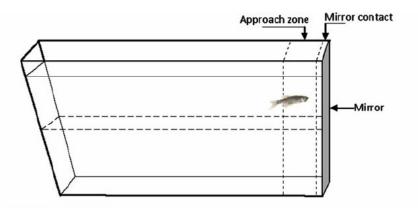

- Number of attacks from the dominant
- Total duration of chasing
- Total duration of subordinate's freezing behavior

A. Dominant Behavior

Acute exposure to fluoxetine can alter the aggressive behavior of adult male zebrafish.

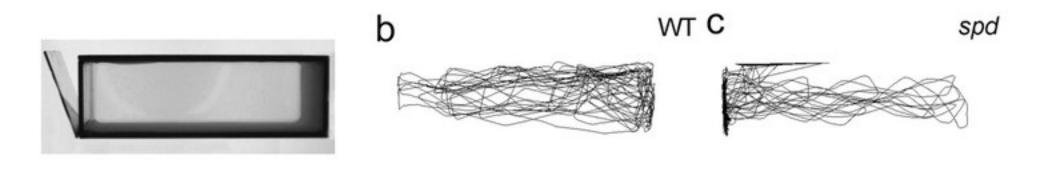
B. Subordinate Behavior

Theodoridi et al., 2017


Mirror test

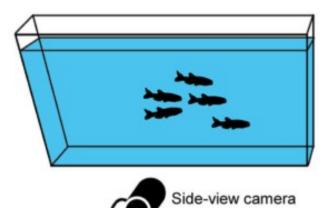
An established protocol to study **social** and **aggressive** behavior in adult zebrafish.

Not possible to observe the full repertoire of aggressive behavior and it has been shown that zebrafish have different endocrinological and genetic responses to a mirror "fight" (Teles *et al.*, 2013), but the risk of injury is avoided.


Measured parameters:

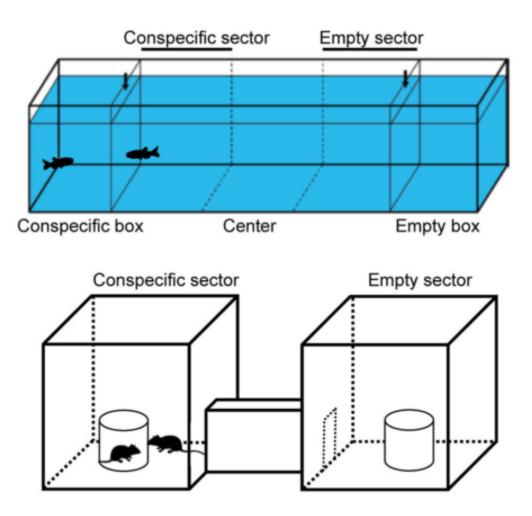
- ✓ Frequency of attacking the mirror
- \checkmark Total duration of biting the mirror
- ✓ Number of contacts with the mirror
- \checkmark Latency of approaching the mirror

Mirror test

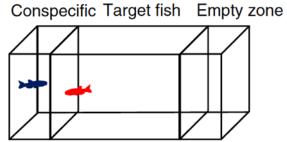


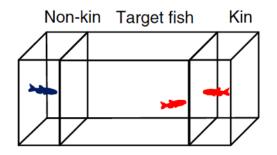
Norton et al., 2011

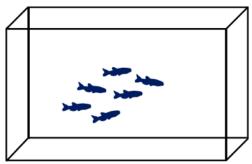
Representative trace of the swimming behavior of WT (b) and mutants with a robust aggressive phenotype (knock-out of **fibroblast growth factor receptor 1a** (Fgfr1a)) (c).

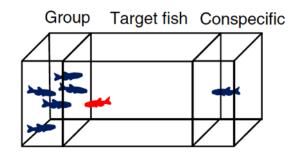

Tests assessing social behavior

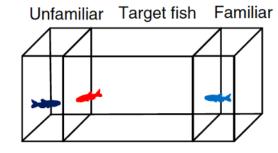
Shoal cohesion test

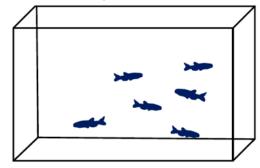



Social preference test


Tests assessing social behavior


Α



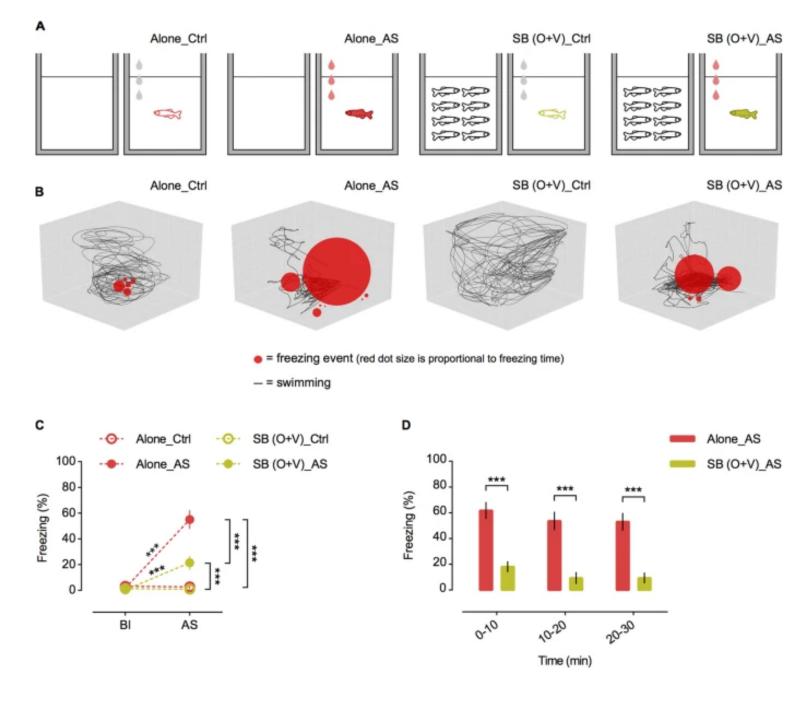

B Normal school

Disrupted, loose school

Stewart et al., 2014

Social buffering

Social buffering: the phenomenon by which group living and presence of conspecifics reduces stress responses.


Important potential for the enhancement of welfare in captive fish.

An analysis of social buffering of stress response in zebrafish verified that the effect is independent of shoal size and related to brain regions known to be involved in mammalian social buffering.

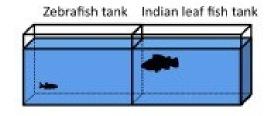
Adult zebrafish were exposed to an aversive stimulus (alarm substance) either in the absence or presence of conspecific cues.

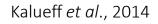
The behavioral analysis focused on these five stress indicators:

- location in tank and
- freezing.

"When exposed to AS in the presence of both olfactory (shoal water) and visual (sight of shoal) conspecific cues, focal fish exhibited a **lower fear response** than when tested alone, demonstrating social buffering in zebrafish. When separately testing each cue's effectiveness, we verified that the **visual cue** was more effective than the olfactory in reducing freezing in a persistent threat scenario."

Faustino *et al.*, 2017

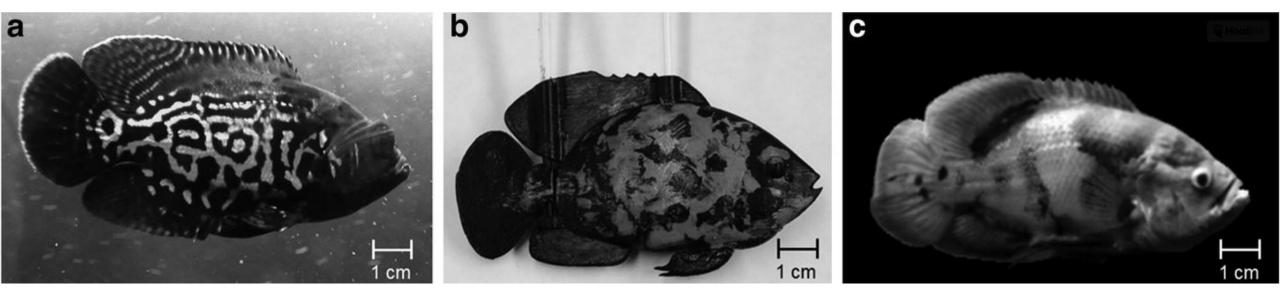

Predator avoidance test


Zebrafish natural predators include among others Indian leaf fish (*Nandus nandus*), freshwater garfish (Xennentodon spp.), catfish (*Mystus bleekeri*), as well as avian predators.

In laboratory conditions, the presence of the Indian leaf fish induces fear-like responses in zebrafish, which consist of:

- Increased frequency of escape efforts and
- erratic movements post exposure to a predator (Bass & Gerlai, 2008).

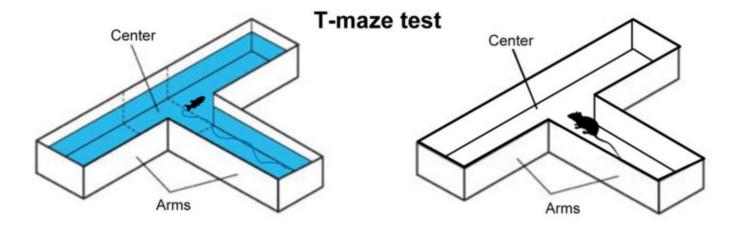
Depending on the species of predator that they are exposed to, zebrafish adjust their defensive and fear-like behaviors (Ahmed *et al.*, 2012).



Indian leaf fish, Nandus nandus

Predator avoidance test

Exposure to both live predator and the robotic model induced a robust avoidance response in zebrafish. Contrary to this, computer-animated images failed to elicit a fear-like behavioral response.



(a) Live red tiger oscar; (b) robotic predator designed after the live oscar; and (c) snapshot of the computer-animated of live Oscar

Ladu *et al.,* 2015

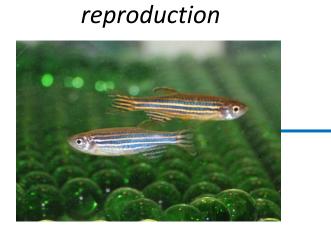
T-maze

- Learning capacity
- Long-term memory
- Short-term memory
- Memory plasticity

T-maze

Alternative structure

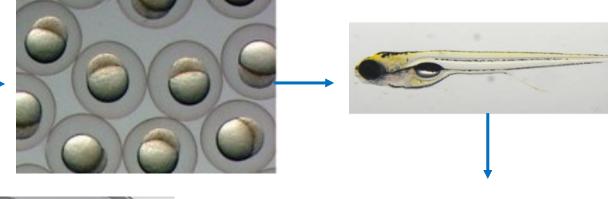
One arm has an enriched environment which is favorable to zebrafish (plants and marbles).

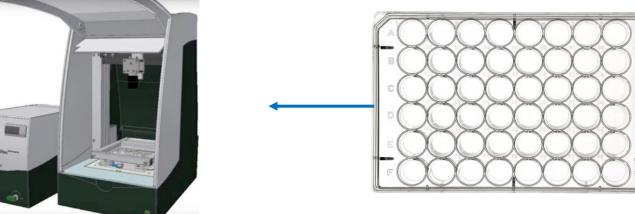


Assessing stress response in zebrafish larvae

Fewer behavioral protocols have been established for zebrafish larvae. The most commonly used are:

- Acute stress response to a swirling stressor
- Tapping assay
- Light/Dark preference
- Open field test

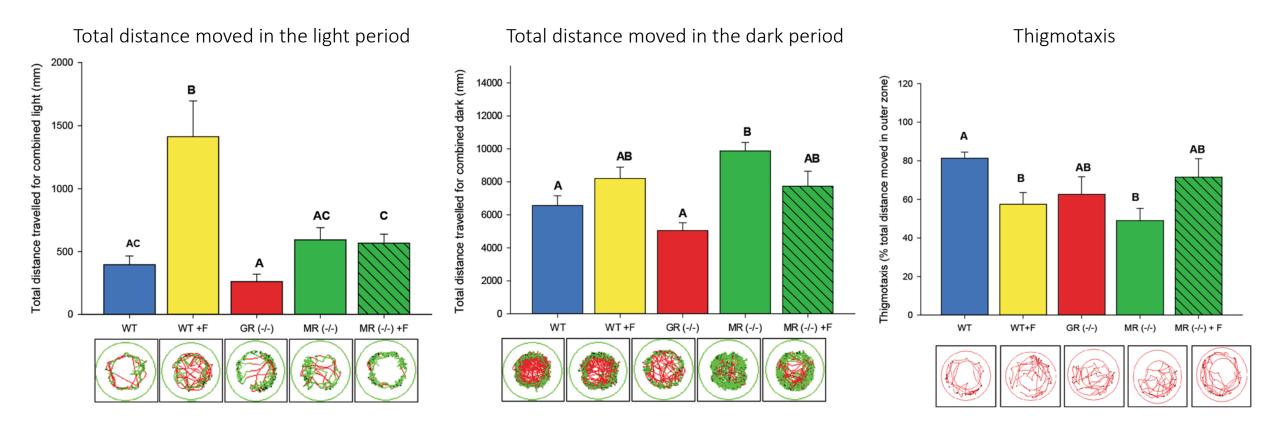

Behavioral studies in zebrafish larvae



Adult zebrafish used for

Fertilised eggs

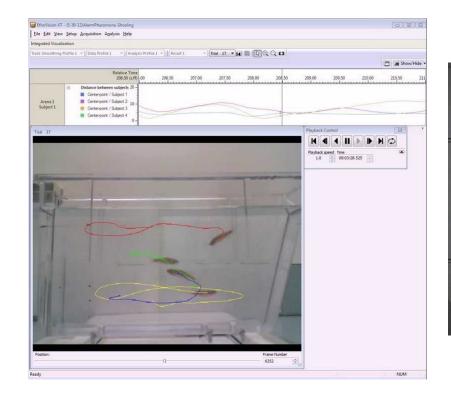
Larvae 5 days post fertilization (dpf)

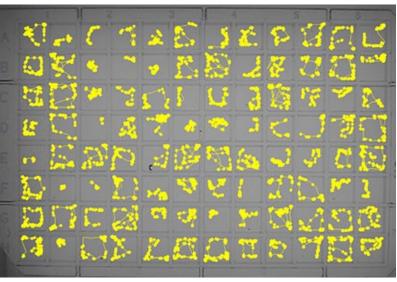


Transfer of larvae in cell culture plates

Observation Chamber

Assessing stress response in zebrafish larvae




Larvae with different genetic manipulations related to genes regulating the HPI axis display differences in light/dark preference and anxiety levels (thigmotaxis).

Behavioral analysis software packages

Noldus



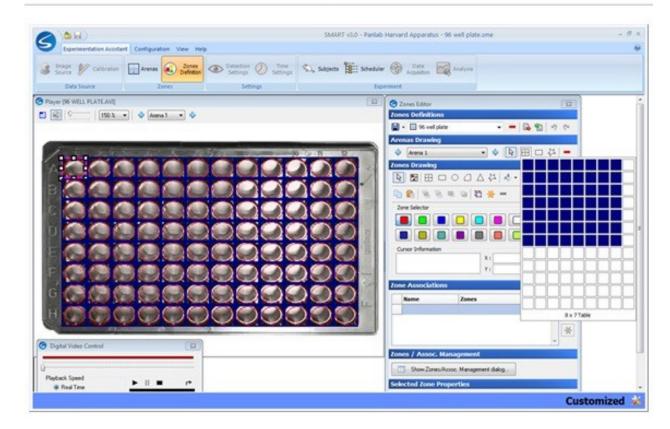
Ethovision

Behavioral analysis software packages

Viewpoint

Zebrabox

Zebracube


Behavioral analysis software packages

Smart 3.0

Y-maze Spontaneous Alternation

Separate Sever Carto	te 😨 Rustine 🕖 Time 😨 Bar	1			
ignetiment Player	Data Acquisition				
Mal Las Real	Mar - State	C Runtime Viewer Arona Selector		(12)	Control Activity Details
the share and have		💠 [Ama1		- •	\$ Area 1
		General data			Current Global Activity
		Subject More 1			feet on the second seco
		Current zone: 0		10.00	Activity: 337,78-06-98
		Speed 73.85 cm/s	162 .	tature 100	O contrib Status In: High Activity
					Global Activity Status
		Actually 337,78 cmP/s	0 10 9	latur 💽	System Aprovies
		Protocol Specifics			Involve Low Activity High-Activity
COM CONTRACTOR		C Transition List			00:00:08.80 () 00:00 (4.20 () 00:00:37.10
		Arena Selector	_		1 1 1
		Arma 1.		• •	
and the second second		Zone Transition List	_	100 V	
		Tame Zone	Permanen	cy Wew A	Global Activity Hap
and the second		00:00:00,0 C	4,90	(32)	
		00-00-04,90 Molde	0,70	(22)	
		00:00:05.50 A	5,30	(36)	
d Video Control	(2) Tene Control Start / Stop	00-00-30,90 Mode	1,30	(AK)	A atta
		00:00:12,20 C	6,30	(33)	
dack Speed	III Start III Star	00-00-18,50 Mode	0,50		AND ALL
O Red Texe	n No trial selected	00:00:18,5 B	5,60	(35)	
As fast as pondie 00:00:		00-00-24,60 Mode 00:00-25,80 A	1,20	35	130
	- Acquisition Mode: The Set Time	and any set and because	0,40	(22)	
	Latency Time: 00:00:0 Acquisiton Time (00:00:0		3,90	(22)	50 50 50 50 TO
	and the second s	AD-00-11 20 MARKs	0.40	- (44) *	1.2.0

Zebrafish Larvaes Activity

Open-source behavioral analysis software packages

Software	Operative system/program	Types of analyses	Types of input	Types of output	Webpage
wrMTrck	Windows and Mac OS X/ JAVA-ImageJ	Total length, average speed, area, perimeter, and trajectories.	AVI files with jpg compression	txt, xls, tiff files and AVI videos	www.phage.dk/plugins/ wrmtrck.html
Mouse Behavior Tracker	Windows, Mac OS X and Linux/JAVA-ImageJ	Distance and average velocity.	AVI or MPEG-compressed AVI files, Mp4	Txt or xls files	www.BioTechniques.com/ article/114607.
AnimalTracker	Windows, Mac OS X and Linux/JAVA-ImageJ	Total length, average speed, and time spent in ROI.	AVI files with jpg compression	txt, xls, tiff files and AVI videos	animaltracker.elte.hu
idTracker	Windows/MATLAB	Trajectories, identification of one animal in different videos and ROI.	Compatible with MATLAB, uncompressed AVI or MPEG-compressed AVI files	X and Y coordinates and images files	www.idtracker.es
Mousetracker	Windows, Linux and Mac OS X/Pascal-Delphi-MS Excel	Velocity, acceleration, and time spent in ROI.	AVI format	XY coordinates can be copied directly	www.neuro.ufrn.br/ softwares/mouselabtracker
JAABA	Windows, Mac OS X and Linux/MATLAB	Bites, persecution, sexual behavior, angle of turn, grooming, jump, walk, immobilization, and touch. Locomotion and ROI.	Several formats and resolutions. X and Y coordinates	MATLAB files	http://jaaba.sourceforge.net https://www.janelia .org/lab/branson-lab
Ctrax	Windows and Mac OS X/ Phyton—MATLAB	Trajectories, velocities, speed, position, and turning speed histograms.	Common digital video formats, mainly AVI	csv and mat files. Converts the file to .ann extension	ctrax.sourceforge.net
VideoHacking	Windows, Mac OS X and Linux/Phyton—Open CV	Velocity, acceleration, total length, average speed, and time spent in ROI.	Common digital video formats	Graphical interface to view data summary	faculty.ithaca.edu/iwoods/ docs/
ToxTrack/ToxId	Windows/C++	Total distance, speed, acceleration, time near the walls (measure of anxiety), and ROI.	AVI or MPEG-compressed AVI files	txt, xls, tiff files and AVI videos	https://sourceforge .net/projects/toxtrac/
EthoWatcher	Windows/C++	Frequency, duration, and latency of each behavior.	AVI or MPEG-compressed AVI files	csv files	http://ethowatcher .paginas.ufsc.br
MouseMove	Windows/LabView—ImageJ	Distance, average velocity, acceleration, curvature, stationary fraction, laterality y ROI.	AVI or MPEG-compressed AVI files	csv files	https://www.nature.com/ articles/srep16171#s3, Supplementary File 2
Cowlog	Windows, Mac OS X and Linux/Java—html	Analysis of different behaviors can be set (tapping a button when the event occurs)	Common digital video formats	csv files	cowlog.org

AVI, audio video interleaved; MJPEG, motion joint photographic experts group; ROI, region of interest.

Open-source behavioral analysis software packages

Review Article Published: 29 July 2021

A review of 28 free animal-tracking software applications: current features and limitations

Veronica Panadeiro, Alvaro Rodriguez 🗠, Jason Henry, Donald Wlodkowic & Magnus Andersson

Lab Animal **50**, 246–254 (2021) Cite this article

Deep-learning methods in behavioral analyses

www.nature.com/npp

Neuropsychopharmacology

ARTICLE OPEN Deep learning-based behavioral analysis reaches human accuracy and is capable of outperforming commercial solutions

Oliver Sturman^{1,2}, Lukas von Ziegler^{1,2}, Christa Schläppi^{1,2}, Furkan Akyol^{1,2}, Mattia Privitera^{1,2}, Daria Slominski^{1,2}, Christina Grimm^{2,3}, Laetitia Thieren^{2,4}, Valerio Zerbi^{2,3}, Benjamin Grewe^{2,5,6} and Johannes Bohacek^{1,2}

Deep-learning methods in behavioral analyses

nature neuroscience TECHNICAL REPORT https://doi.org/10.1038/s41593-018-0209-y

DeepLabCut: markerless pose estimation of user-defined body parts with deep learning

St Andrews Alexander Mathis^{1,2}, Pranav Mamidanna¹, Kevin M. Cury³, Taiga Abe³, Venkatesh N. Murthy², Mackenzie Weygandt Mathis^{1,4,8*} and Matthias Bethge^{1,5,6,7,8}

Home Profiles Research output Datasets/Software Research units Projects Activities ...

PoseR - A deep learning toolbox for decoding animal behavior

Pierce Mullen, Maarten Frans Zwart

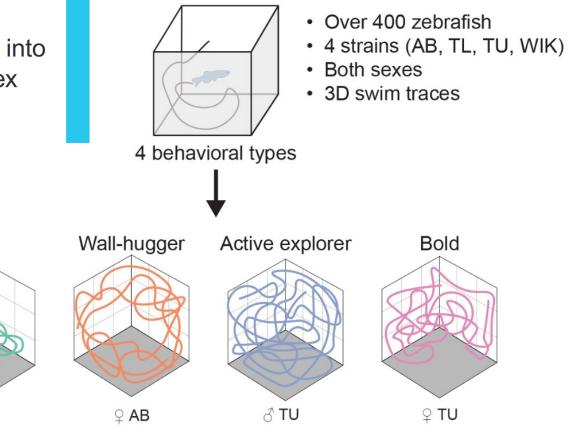
University of

School of Psychology and Neuroscience, Centre for Biophotonics, Institute of Behavioural and Neural Sciences

DeepLabCut in zebrafish behavioral studies

Shy

 \bigcirc TL

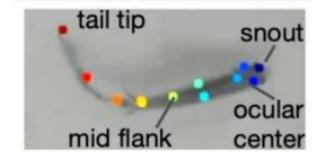

♂ TL

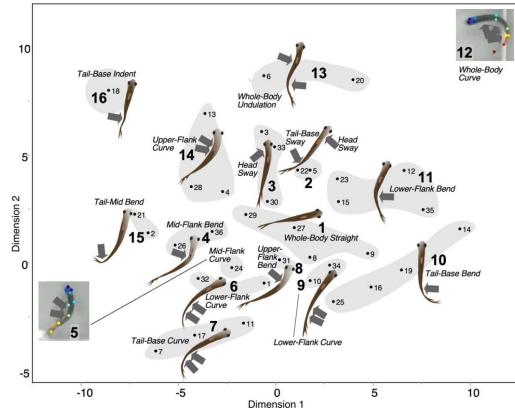
The Company of **Biologists**

© 2022. Published by The Company of Biologists Ltd | Biology Open (2022) 11, bio059443. doi:10.1242/bio.059443

RESEARCH ARTICLE

Beyond bold versus shy: Zebrafish exploratory behavior falls into several behavioral clusters and is influenced by strain and sex Neha Rajput, Kush Parikh and Justin W. Kenney*




DeepLabCut in zebrafish behavioral studies

Pose analysis in free-swimming adult zebrafish, *Danio rerio*: "fishy" origins of movement design

Jagmeet S. Kanwal^{1*}, Bhavjeet Sanghera^{+1,2}, Riya Dabbi¹ and Eric Glasgow³

¹Department of Neurology, Georgetown University Medical Center, Washington, DC, USA, ²University of Miami, Coral Gables, FL, USA ³Department of Oncology, Georgetown University Medical Center, USA

References

- Kalueff, A.V., Stewart, A.M., Gerlai, R. (2014). Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 35(2): 63-75.
- Cachat, J. et al. (2010). Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nature protocols, 5(11), 1786–1799.
- Egan, R.J., Bergner, C.L., Hart, P.C., Cachat, J.M., Canavello, P.R., Elegante, M.F., Elkhayat, S.I., Bartels, B.K., Tien, A.K., Tien, D.H., et al. (2009).
 Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behavioural brain research, 205(1), 38–44.
- Piato, Â.L. et al. (2011). Unpredictable chronic stress model in zebrafish (Danio rerio): behavioral and physiological responses. Progress in neuropsychopharmacology & biological psychiatry, 35(2), 561–7.
- Pavlidis, M., Theodoridi, A. and Tsalafouta, A. (2015). Neuroendocrine regulation of the stress response in adult zebrafish, Danio rerio. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 60, 121–131.
- Chakravarty, S. et al. (2013). Chronic unpredictable stress (CUS)-induced anxiety and related mood disorders in a zebrafish model: altered brain proteome profile implicates mitochondrial dysfunction. PloS one, 8(5), e63302.
- Pavlidis, M. et al. (2011). Adaptive changes in zebrafish brain in dominant-subordinate behavioral context. Behavioural brain research, 225(2), 529– 37.
- Oliveira, R.F., Silva, J.F. and Simões, J.M. (2011). Fighting Zebrafish: Characterization of Aggressive Behavior and Winner–Loser Effects. Zebrafish, 8(2), 73–81.
- Theodoridi, A., Tsalafouta, A., Pavlidis, M. (2017). Acute Exposure to Fluoxetine Alters Aggressive Behavior of Zebrafish and Expression of Genes Involved in Serotonergic System Regulation. Front Neurosci, 11, 223.
- Teles, M.C. et al. (2013). Social modulation of brain monoamine levels in zebrafish. Behavioural brain research, 253C, 17–24.
- Norton, W.H.J. et al. (2011). Modulation of Fgfr1a signaling in zebrafish reveals a genetic basis for the aggression-boldness syndrome. Journal of Neuroscience, 31(39): 13796–13807.
- Stewart, A.M., Nguyen, M., et al. (2014). Developing zebrafish models of autism spectrum disorder (ASD). Progress in Neuro-Psychopharmacology and Biological Psychiatry, 50, 27–36.

References

- Bass SL, Gerlai R. (2008). Zebrafish (Danio rerio) responds differentially to stimulus fish: the effects of sympatric and allopatric predators and harmless fish. Behav Brain Res, 186(1):107-17.
- Faustino, A., Tacão-Monteiro, A. & Oliveira, R. Mechanisms of social buffering of fear in zebrafish. Sci Rep 7, 44329 (2017). https://doi.org/10.1038/srep44329.
- Ahmed O, Seguin D, Gerlai R. (2011). An automated predator avoidance task in zebrafish. Behav Brain Res, 216(1): 166-71.
- Fabrizio, L., Violet, M., Jasmine, L., Simone, M., Maurizio, P. (2015). Acute caffeine administration affects zebrafish response to a robotic stimulus. Behavioural Brain Research, 289, 48-54.
- Faught, E. and Vijayan, M.M. (2018). The mineralocorticoid receptor is essential for stress axis regulation in zebrafish larvae. Scientific Reports, 8(1), 1–11.
- Franco-Restrepo, J.E., Forero, D.A., Vargas, R.A. (2019). A Review of Freely Available, Open-Source Software for the Automated Analysis of the Behavior of Adult Zebrafish. Zebrafish, 16:3, 223-232.
- Panadeiro, V., Rodriguez, A., Henry, J., Wlodkowic, D., Andersson, M. (2021). A review of 28 free animal-tracking software applications: current features and limitations. Lab Anim (NY), 50(9):246-254.
- Sturman, O., von Ziegler, L., Schläppi, C. et al. (2020). Deep learning-based behavioral analysis reaches human accuracy and is capable of outperforming commercial solutions. Neuropsychopharmacol. 45, 1942–1952.
- Mullen, P., & Zwart, M. F. (2023). PoseR A deep learning toolbox for decoding animal behavior. biorxiv.
- Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., & Bethge, M. (2018). DeepLabCut: markerless pose estimation of userdefined body parts with deep learning. Nature Neuroscience.
- Rajput, N., Parikh, K., Kenney, J.W. (2022). Beyond bold versus shy: Zebrafish exploratory behavior falls into several behavioral clusters and is
 influenced by strain and sex. Biol Open; 11(8):bio059443.
- Jagmeet S. Kanwal, Bhavjeet Sanghera, Riya Dabbi, Eric Glasgow. (2023). Pose analysis in free-swimming adult zebrafish, Danio rerio: "fishy" origins
 of movement design. bioRxiv.

Thank you!

Any questions? tonia.theod@gmail.com

